An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with Pollutant Transport

Author:

Fernández-Pato Javier,García-Navarro Pilar

Abstract

Numerical simulation of flows that consider interaction between overland and drainage networks has become a practical tool to prevent and mitigate flood situations in urban environments, especially when dealing with intense storm events, where the limited capacity of the sewer systems can be a trigger for flooding. Additionally, in order to prevent any kind of pollutant dispersion through the drainage network, it is very interesting to have a certain monitorization or control over the quality of the water that flows in both domains. In this sense, the addition of a pollutant transport component to both surface and sewer hydraulic models would benefit the global analysis of the combined water flow. On the other hand, when considering a realistic large domain with complex topography or streets structure, a fine spatial discretization is mandatory. Hence the number of grid cells is usually very large and, therefore, it is necessary to use parallelization techniques for the calculation, the use of Graphic Processing Units (GPU) being one of the most efficient due to the leveraging of thousands of processors within a single device. In this work, an efficient GPU-based 2D shallow water flow solver (RiverFlow2D-GPU) is fully coupled with EPA’s Storm Water Management Model (SWMM). Both models are able to develop a transient water quality analysis taking into account several pollutants. The coupled model, referred to as RiverFlow2D-GPU UD (Urban Drainge) is applied to three real-world cases, covering the most common hydraulic situations in urban hydrology/hydraulics. A UK Environmental Agency test case is used as model validation, showing a good agreement between RiverFlow2D-GPU UD and the rest of the numerical models considered. The efficiency of the model is proven in two more complex domains, leading to a >100x faster simulations compared with the traditional CPU computation.

Funder

URBAN-FLOW Desarrollo de una herramienta de simulación de flujo en zonas urbanas

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference44 articles.

1. Normalised flood losses in Europe: 1970–2006

2. Integrated Flood Management. Guidelines and Study Cases;Paoli,2015

3. Flooding risk maps and the representation of vulnerability in Gran La Plata, Buenos Aires;Schomwandt;Rev. Geol. Apl. Ing. Ambiente,2016

4. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis

5. Urban flooding: Risk maps and territorial urban planning guidelines. Theoretical-methodological background and purposes;Etulain;Estud. Del Habitat,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3