Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021

Author:

Kavzoglu TaskinORCID,Goral Merve

Abstract

Global warming together with environmental pollution threatens marine habitats and causes an increasing number of environmental disasters. Periodic monitoring of coastal water quality is of critical importance for the effective management of water resources and the sustainability of marine ecosystems. The use of remote sensing technologies provides significant benefits for detecting, monitoring, and analyzing rapidly occurring and displaced natural phenomena, including mucilage events. In this study, five water indices estimated from cloud-free and partly cloudy Sentinel-2 images acquired from May to July 2021 were employed to effectively map mucilage aggregates on the sea surface in the Izmit Bay using the cloud-based Google Earth Engine (GEE) platform. Results showed that mucilage aggregates started with the coverage of about 6 km² sea surface on 14 May, reached the highest level on 24 May and diminished at the end of July. Among the applied indices, the Adjusted Floating Algae Index (AFAI) was superior for producing the mucilage maps even for the partly cloudy image, followed by Normalized Difference Turbidity Index (NDTI) and Mucilage Index (MI). To be more specific, indices using green channel were found to be inferior for extracting mucilage information from the satellite images.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference61 articles.

1. PHYTOPLANKTON INDICATORS OF ECOLOGICAL CHANGE IN THE EUTROPHYING PAMLICO SOUND SYSTEM, NORTH CAROLINA

2. The Reasons for Occurrence of Sea Snot/Mucilage in the Sea of Marmara,2021

3. Mucilaginous aggregates in the northern Adriatic in the period 1999–2002: Typology and distribution

4. The Mucilage Phenomenon in the Northern Adriatic Sea. A Critical Review of the Present Scientific Hypotheses;Degobbis;Ann. Ist. Super. Sanita,1999

5. Mucilages in Italian seas: the Adriatic and Tyrrhenian Seas, 1988–1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3