Can a Calibration-Free Dynamic Rainfall‒Runoff Model Predict FDCs in Data-Scarce Regions? Comparing the IDW Model with the Dynamic Budyko Model in South India

Author:

Nag ,Biswal ORCID

Abstract

Construction of flow duration curves (FDCs) is a challenge for hydrologists as most streams and rivers worldwide are ungauged. Regionalization methods are commonly followed to solve the problem of discharge data scarcity by transforming hydrological information from gauged basins to ungauged basins. As a consequence, regionalization-based FDC predictions are not very reliable where discharge data are scarce quantitatively and/or qualitatively. In such a scenario, it is perhaps more meaningful to use a calibration-free rainfall‒runoff model that can exploit easily available meteorological information to predict FDCs in ungauged basins. This hypothesis is tested in this study by comparing a well-known regionalization-based model, the inverse distance weighting (IDW) model, with the recently proposed calibration-free dynamic Budyko model (DB) in a region where discharge observations are not only insufficient quantitatively but also show apparent signs of observational errors. The DB model markedly outperformed the IDW model in the study region. Furthermore, the IDW model’s performance sharply declined when we randomly removed discharge gauging stations to test the model in a variety of data availability scenarios. The analysis here also throws some light on how errors in observational datasets and drainage area influence model performance and thus provides a better picture of the relative strengths of the two models. Overall, the results of this study support the notion that a calibration-free rainfall‒runoff model can be chosen to predict FDCs in discharge data-scarce regions. On a philosophical note, our study highlights the importance of process understanding for the development of meaningful hydrological models.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3