Evaluation of Global Precipitation Products over Wabi Shebelle River Basin, Ethiopia

Author:

Tadesse Kindie EngdawORCID,Melesse Assefa M.ORCID,Abebe AdaneORCID,Lakew Haileyesus BelayORCID,Paron PaoloORCID

Abstract

This study presents three global precipitation products and their downscaled versions (CHIRPSv2, TAMSATv3, PERSIANN_CDR, CHIRPS_D, PERSIANNN_CDR_D, and TAMSAT_D) estimated with observed values from 1983 to 2014. Performance evaluation of global precipitation products and their downscaled versions is important for accurate use of those measured values in water resource management, climate, and hydrological applications, particularly in the data-sparse Wabi Shebelle River Basin, Ethiopia. Categorical and quantitative evaluation index techniques were applied. The spatial downscaled global precipitation products outperformed raw spatial resolution estimates in all statistical indicators. TAMSAT-D had acceptable performance ratings in terms of RMSE, CC, and scatter plots (R2). CHIRPSv2 showed the least performance at a daily timestep. Performance of global precipitation products and their downscaled versions increased when daily data were aggregated to the monthly data. CHIRPS-D performed better than other products with a minimum error value (RMSE) and higher CC at a monthly timestep. On the other hand, PERSIANN_CDR_D showed a relatively good performance with a lower, positive Pbias and higher POD values compared to other products for daily and monthly timescales. For spatial mismatch analysis, the bias and RMSE from reference data (individual rain gauge station vs. the average of all available eight stations) against satellite rainfall estimates (PERSIANN_CDR) had a significantly different weight, which could be related to the position of the gauge station to provide the “true” spatial rainfall amount. Overall, TAMSATv3 and CHIRPSv2 and their downscaled version satellite estimates showed good performance at daily and monthly timesteps, respectively. PERSIANN_CDR performed best with low Pbias and the highest POD values. Thus, this study decided that the downscaled version of CHIRPSv2 and PERSIANN_CDR-D satellite estimates could be applicable as an alternative to gauge data on a monthly timestep for hydrological and drought-monitoring applications, respectively.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3