Climate Change Impacts on Inflows into Lake Eppalock Reservoir from Upper Campaspe Catchment

Author:

Yilmaz Abdullah GokhanORCID,Atabay Serter,Amou Assar Kimia HajiORCID,Imteaz Monzur AlamORCID

Abstract

Climate change has significant effects on societies and ecosystems. Due to the strong link between climate and the hydrological cycle, water resources is one of the most affected fields by climate change. It is of great importance to investigate climate change effects on streamflows by producing future streamflow projections under different scenarios to create adaptation measures and mitigate potential impacts of climate change. The Upper Campaspe Catchment (UCC), located at North Central Victoria in Australia, is a significant catchment as it provides a large portion of total inflow to the Lake Eppalock Reservoir, which supplies irrigation to the Campaspe Irrigation district and urban water to Bendigo, Heathcote, and Ballarat cities. In this study, climate change effects on monthly streamflows in the UCC was investigated using high resolution future climate data from CSIRO and MIROC climate models in calibrated IHACRES hydrological model. The IHACRES model was found to be very successful to simulate monthly streamflow in UCC. Remarkable streamflow reductions were projected based on the climate input from both models (CSIRO and MIROC). According to the most optimistic scenario (with the highest projected streamflows) by the MIROC-RCP4.5 model in near future (2035–2064), the Upper Campaspe River will completely dry out from January to May. The worst scenario (with the lowest streamflow projection) by the CSIRO-RCP8.5 model in the far future (2075–2104) showed that streamflows will be produced only for three months (July, August, and September) throughout the year. Findings from this study indicated that climate change will have significant adverse impacts on reservoir inflow, operation, water supply, and allocation in the study area.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3