An Integrated Hydrological Modelling Approach to Evaluate the Capacity of Keenjhar Lake by Using STELLA

Author:

Sher Sadaf,Waseem Muhammad,Waqas Muhammad MohsinORCID,Rehman Khawar,Ilyas Muhammad,Waqas Hafiz Ahmed,Kebede Leta MegersaORCID

Abstract

Due to overexploitation and lower rainfall rates, it is essential to study the detailed water balance of the Keenjhar lake by considering the climate change impacts and higher water demands linked with the population growth. A hydrological model of Keenjhar Lake is developed based on a system dynamic approach using STELLA (Structural Thinking and Experiential Learning Laboratory with Animation). The model (STELLA) developed in the current research study comprises the following three sub-systems: population, water supply, and water demand. The hydrological and climate data for the period of seventeen years (2000–2016) is used in the current study. The monthly water budget of the Keenjhar Lake is determined by inflow components such as rainfall and the Kalri-Baghar Feeder (K.B.F) (upper) and outflow components such as evaporation, the K.B. Feeder (lower), and the Keenjhar-Gujju (K.G) canal from the lake. The water balance results revealed that the contribution of direct rainfall and the annual inflow components to the lake are 22.03% and 77.91%, respectively. Whereas the evaporation, outflow to K.B.F lower and water abstraction to the K.G. Canal constituted about 5.78%, 92.55%, and 1.57% of the total annual outflow from the lake, respectively. Moreover, the annual inflow components of the water budget of the lake showed a declining trend while the outflow components (water abstraction) intimated an increasing trend. The study results also acknowledged that the demand for water can increase from 3 × 1010 ft3/yr up to 1.2 × 1011 ft3/yr by the year 2050 (influence of overdrawing of water due to population growth), and water supply may decrease to 9.066 × 1010 ft3 (rainfall depletion due to climate change). A detailed water balance explains the main water loss components and will help in developing better water management practices and well-informed policy decisions.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3