Changed Seasonality and Forcings of Peak Annual Flows in Ephemeral Channels at Flagstaff, Northern Arizona, USA

Author:

Schiefer Erik1ORCID,Schenk Edward2ORCID

Affiliation:

1. Department of Geography, Planning & Recreation, Northern Arizona University, Flagstaff, AZ 86011, USA

2. Flagstaff Water Services, Flagstaff, AZ 86004, USA

Abstract

Flood variability associated with urbanization, ecological change, and climatic change is of increasing economic and social concern in and around Flagstaff, Arizona, where flood hydrology is influenced by a biannual precipitation regime and the relatively unique geologic setting at the edge of the San Francisco Volcanic Field on the southern edge of the Colorado Plateau. There has been limited long-term gauging of the ephemeral channels draining the developed lands and dry coniferous forests of the region, resulting in a spaciotemporal gap in observation-based assessments of large-scale flooding patterns. We present new data from over 10 years of flood monitoring using a crest stage gauge network, combined with other channel monitoring records from multiple agency sources, to assess inter-decadal patterns of flood change in the area, with a specific emphasis on examining how various controls and disturbances have altered the character and seasonality of peak annual flows. Methods of analysis included the following: using Fisher’s Exact Test to compare the seasonality of flooding between historic data spanning the 1970s and contemporary data obtained since 2010; summarizing GIS-based spatial data and meteorological timeseries to characterize study catchment conditions and changes between flood study periods; and relating spatiotemporal patterns of flood seasonality and occurrences of notably large floods with catchment characteristics and environmental changes. Our results show systematic patterns and changes in Flagstaff-area flood regimes that relate to geologic and topographic controls of the varied catchment systems, and in response to records of climate variations and local catchment disturbances, including urbanization and, especially, high-severity wildfire. For most catchments there has been a shift from predominantly late winter to spring snowmelt floods, or mixed seasonal flood regimes, towards monsoon-dominated flooding, patterns which may relate to observed local warming and precipitation changes. Post-wildfire flooding has produced extreme flood discharges which have likely exceeded historical estimates of flood magnitude over decade-long monitoring periods by one to two orders of magnitude. We advocate for continued monitoring and the expansion of local stream gauge networks to enable seasonal, magnitude-frequency trend analyses, improved climate and environmental change attribution, and to better inform the many planned and ongoing flood mitigation projects being undertaken in the increasingly developed Flagstaff region.

Publisher

MDPI AG

Reference45 articles.

1. Lee, H., and Romero, J. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. Ranasinghe, R., Ruane, A.C., Vautard, R., Arnell, N., Coppola, E., Cruz, F.A., Dessai, S., Saiful Islam AK, M., Rahimi, M., and Carrascal, D.R. (2021). Climate Change Information for Regional Impact and for Risk Assessment, Cambridge University Press.

3. Trends in snowmelt-related streamflow timing in the conterminous United States;Dudley;J. Hydrol.,2017

4. Changes in mechanisms and characteristics of western US floods over the last sixty years;Huang;Geophys. Res. Lett.,2022

5. Climate related changes to flood regimes show an increasing rainfall influence;Burn;J. Hydrol.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3