Decline in Seasonal Snow during a Projected 20-Year Dry Spell

Author:

Hatchett Benjamin J.ORCID,Rhoades Alan M.ORCID,McEvoy Daniel J.ORCID

Abstract

Snowpack loss in midlatitude mountains is ubiquitously projected by Earth system models, though the magnitudes, persistence, and time horizons of decline vary. Using daily downscaled hydroclimate and snow projections, we examine changes in snow seasonality across the U.S. Pacific Southwest region during a simulated severe 20-year dry spell in the 21st century (2051–2070) developed as part of the 4th California Climate Change Assessment to provide a “stress test” for water resources. Across California’s mountains, substantial declines (30–100% loss) in median peak annual snow water equivalent accompany changes in snow seasonality throughout the region compared to the historic period. We find that 80% of historic seasonal snowpacks transition to ephemeral conditions. Subsetting empirical-statistical wildfire projections for California by snow seasonality transition regions indicates a two-to-four-fold increase in the area burned, consistent with recent observations of high elevation wildfires following extended drought conditions. By analyzing six of the major California snow-fed river systems, we demonstrate snowpack reductions and seasonality transitions result in concomitant declines in annual runoff (47–58% of historical values). The negative impacts to statewide water supply reliability by the projected dry spell will likely be magnified by changes in snowpack seasonality and increased wildfire activity.

Funder

National Oceanic and Atmospheric Administration

United States Department of Energy

California Department of Water Resources

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3