Investigating Thermal Controls on the Hyporheic Flux as Evaluated Using Numerical Modeling of Flume-Derived Data

Author:

Riedel Jake W.,Peterson Eric W.ORCID,Dogwiler Toby J.ORCID,Seyoum Wondwosen M.ORCID

Abstract

The flux of water through the hyporheic zone (HZ) is controlled by stream bedforms, sinuosity, surface water velocity, local water table, seasonality, and hydraulic conductivity (K) of the bed material. Dependent on both the kinematic viscosity and density of water, K values are a function of temperature. In most studies, changes in temperature have been neglected because of the limited effect either density or viscosity has on K values. However, these variations are important given the role of K in HZ flux, which lead to the hypothesis that flow into the HZ would be more efficient (faster rate and greater depth) under warmer conditions than under cool conditions. To discern how water temperature affects flow depth in the HZ, VS2DHI simulations were created to map flow under both warm and cool thermal conditions. The models employed data collected from a series of varying temperature hydrologic flume tests in which the effects of hyporheic flow altering variables such as sinuosity, surface water velocity and volume, and bed-forms were controlled. Results verify that K values in the HZ were larger under warm conditions generating deeper HZ pathways, while the smaller K values under cool conditions produced shallower pathways. The simulations confirmed a faster speed of frontal movement under warm conditions than cool. Péclet numbers revealed a shallower advective extinction depth under cool conditions as opposed to warm.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference38 articles.

1. Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature

2. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana

3. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity;Lapham;Water-Supply Pap.,1989

4. Computation of ground-water velocity from temperature data;Stallman;USGS Water Supply Pap.,1963

5. Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3