Evaluation of Debris Flows for Flood Plain Estimation in a Small Ungauged Tropical Watershed for Hurricane Otto

Author:

Fallas Salazar Sebastián,Rojas González Alejandra M.ORCID

Abstract

The variability of climate, increase in population, and lack of territorial plans in Costa Rica have caused intense disasters with human and economic losses. In 2016, Hurricane Otto hit the country’s northern area, leaving substantial damages, including landslides, debris flows, and flooding. The present study evaluated different scenarios to estimate flooded areas for Newtonian (clean water), and non-Newtonian flows with volumetric sediment concentrations (Cv) of 0.3, 0.45, 0.55, and 0.65 using Hydro-Estimator (HE), rain gauge station, and the 100-year return period event. HEC–HMS modeled the rainfall products, and FLO-2D modeled the hydrographs and Cv combinations. The simulation results were evaluated with continuous statistics, contingency table, Nash Sutcliffe Efficiency, measure of fit (F), and mean absolute differences (E) in the floodplains. Flow depths, velocities, and hazard intensities were obtained in the floodplain. The debris flood was validated with field data and classified with a Cv of 0.45, presenting lower MAE and RMSE. Results indicated no significant differences in flood depths between hydrological scenarios with clean-water simulations with a difference of 8.38% in the peak flow. The flood plain generated with HE rainfall and clear-water condition presented similar results compared to the rain gauge input source. Additionally, hydraulic results with HE and Cv of 0.45 presented E and F values similar to the simulation of Cv of 0.3, demonstrating that the HE bias did not influence the determination of the floodplain depth and extent. A mean bias factor can be applied to a sub-daily temporal resolution to enhance HE rain rate quantifications and floodplain determination.

Funder

Vicerrectoría de Investigación, Universidad de Costa Rica

Comisión Nacional de Prevención de Riesgos y Atención de Emergencias Costa Rica

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference75 articles.

1. EM-DAT|The International Disasters Databasehttps://www.emdat.be/

2. DesInventar Open Source Initiativehttps://www.desinventar.net/

3. A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods

4. Application of Sensitivity Analysis for Process Model Calibration of Natural Hazards

5. Some Considerations on the Application of the FLO-2D Model for Debris Flow Hazard Assessment;D’Agostino,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3