Soil–Water–Atmosphere Effects on Soil Crack Characteristics under Field Conditions in a Semiarid Climate

Author:

Ribeiro Filho Jacques Carvalho1ORCID,Andrade Eunice Maia de2,Guerreiro Maria Simas3ORCID,Palácio Helba Araújo de Queiroz4,Brasil José Bandeira1

Affiliation:

1. Departamento de Engenharia agrícola, Campus do Pici, Universidade Federal do Ceará, Fortaleza CEP 60455-760, Brazil

2. Departamento de Conservação de Solo e Água, Universidade Federal Rural do Semi-Arido, Rua Francisco Mota, 572, Mossoró CEP 59625-900, Brazil

3. I3ID, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal

4. Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Rodovia Iguatu-Várzea Alegre km, 5, Iguatu CEP 63503-790, Brazil

Abstract

Soil’s physical and hydrological properties influence the proper modeling, planning, and management of water resources and soil conservation. In areas of vertic soils subjected to wetting and drying cycles, the soil–water–atmosphere interaction is complex and understudied at the field scale, especially in dry tropical regions. This work quantifies and analyzes crack development under field conditions in an expansive soil in a semiarid region for both the dry and rainy seasons. Six 1 m2 plots in an experimental 2.8 ha watershed were photographed and direct measurements were taken of the soil moisture and crack area, depth and volume once a week and after a rainfall event from July 2019 to June 2020. The rainfall was monitored for the entire period and showed a unimodal distribution from December to May after five months without precipitation. The cracks were first sealed in the plots with a predominance of sand and when the soil moisture was above 23% and had an accumulated precipitation of 102 mm. The other plots sealed their cracks when the soil moisture was above 32% and with an accumulated precipitation in the rainy season above 222 mm. The cracks redeveloped after sealing upon a reduction of 4% in the soil moisture. The depth of the cracks showed a better response to climatic variations (total precipitation, soil moisture and continuous dry and wet days). The higher clay content and the higher plasticity index plots developed more cracks with greater depth and volume.

Funder

CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3