Quantifying Groundwater Resources for Municipal Water Use in a Data-Scarce Region

Author:

Borzì IolandaORCID,Bonaccorso BrunellaORCID

Abstract

Groundwater is a major source of drinking water worldwide, often considered more reliable than surface water and more accessible. Nowadays, there is wide recognition by the scientific community that groundwater resources are under threat from overexploitation and pollution. Furthermore, frequent and prolonged drought periods due to climate change can seriously affect groundwater recharge. For an appropriate and sustainable management of water systems supplied by springs and/or groundwater withdrawn from aquifers through drilling wells or drainage galleries, the need arises to properly quantify groundwater resources availability, mainly at the monthly scale, as groundwater recharge is influenced by seasonality, especially in the Mediterranean areas. Such evaluation is particularly important for ungauged groundwater bodies. This is the case of the aquifer supplying the Santissima Aqueduct, the oldest water supply infrastructure of the city of Messina in Sicily (Southern Italy), whose groundwater flows are measured only occasionally through spring water sampling at the water abstraction plants. Moreover, these plants are barely maintained because they are difficult to reach. In this study, groundwater recharge assessment for the Santissima Aqueduct is carried out through a GIS-based inverse hydrogeological balance methodology. Although this approach was originally designed to assess aquifer recharge at the annual scale, wherever a model conceptualization of the groundwater system was hindered by the lack of data, in the present study some changes are proposed to adjust the model to the monthly scale. In particular, the procedure for evapotranspiration assessment is based on the Global Aridity Index within the Budyko framework. The application of the proposed methodology shows satisfactory results, suggesting that it can be successfully applied for groundwater resources estimation in a context where monthly information is relevant for water resources planning and management.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3