Projected Effects of Climate Change on the Energy Footprints of U.S. Drinking Water Utilities

Author:

Sowby Robert B.ORCID,Hales Riley C.ORCID

Abstract

Drinking water systems’ energy footprints depend mostly on the source, quality, and volume of water supply, but also on local temperature and precipitation, both of which are changing with the global climate. From a previous survey, we develop an equation for modeling relative changes in U.S. water utilities’ annual energy use, in which their energy use increases with temperature and decreases with precipitation. To demonstrate, we insert gridded projections from three scenarios in the EPA’s Climate Resilience Evaluation and Awareness Tool (CREAT) and compare 2035 and 2060 periods with a 1981–2010 baseline. Averaged over the continental United States, the 2060 central scenario projects 2.7 °C warmer temperatures and 2.9 cm more annual precipitation. For the same water demand, we estimate that these conditions will cause U.S. water systems’ energy use to change by −0.7% to 13.7% depending on the location (average 8.5% across all grid cells). Warming accounts for a general increase, and local changes in precipitation can add to or subtract from it. We present maps showing the spatial variability for each scenario. Water systems are essential infrastructure that support sustainable communities, and the analysis underscores their needs for energy management, renewable energy, water conservation, and climate change resilience.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference47 articles.

1. U.S. drinking water challenges in the twenty-first century.

2. Climate Change 2021: The Physical Science Basis;Masson-Delmotte,2021

3. Climate Ready Water Utilities: Adaptation Strategies Guide for Water Utilities,2015

4. Searchable Case Studies for Climate Change Adaptation. Climate Change Adaptation Resource Center (ARC-X);EPA (U.S. Environmental Protection Agency)

5. Climate Adaptation—Drinking Water Quality and Health. Climate Change Adaptation Resource Center (ARC-X);EPA (U.S. Environmental Protection Agency)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3