The Spatiotemporal Pattern of Rainy-Season Precipitation in the Haihe River Basin, North China

Author:

Guo Jun,Ren GuoyuORCID,Xiong Mingming,Huang He

Abstract

The Haihe River basin of North China is characterized by extremely low per capita water resources and a consistently long-term decreasing trend of precipitation and runoff over the last few decades. This study analyzes the climatological features of rainy season (May–September) precipitation in the Haihe River basin and its branch systems based on a high-density hourly observational dataset during 2007–2017. We show that there are two high-rainfall zones in the basin, with one along the south of the Yanshan Mountains to Taihang Mountains and another along the Tuma River in the south. Rainstorm centers exist amidst the two zones. July generally sees the highest precipitation, followed by August, and May has the lowest precipitation. The major flood season is reached between the third pentad of July and the fourth pentad of August. The precipitation is high at night but low in the daytime. In the pre-flood season before early July, rainfalls mostly arrive at 16:00–21:00 h. After entering the major flood season, the diurnal precipitation has two peaks, one at 17:00–22:00 h and the other at 0:00–7:00 h. In the post-flood season after mid-August, the most rain occurs at night, with the peak appearing at 0:00–8:00 h. The short-duration precipitation is mainly distributed in the mountainous areas, and the long-duration precipitation that contributes most to seasonal rainfalls appears in the plain areas, and the continuous precipitation mostly occurs in the windward slopes of the Taihang Mountains and the Yanshan Mountains. In addition, urbanization process around large city stations may have affected the rainy season precipitation to a certain extent in the Haihe River basin, with large and medium city stations experiencing around 10% higher precipitation than small city stations. However, this issue needs to be investigated exclusively.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference38 articles.

1. Anomalous Moisture Sources for the Severe Precipitation over North China during Summer;Liang;Plateau Meteorol.,2007

2. The Interdecadal Variability of Summer Precipitation over North China;Liu;J. Appl. Meteorol. Sci.,2011

3. Characteristic Analysis of Unusual Summer Precipitation in North China;Shi;Sci. Meteorol. Sin.,2008

4. Dynamic Optimal Multi-Indexes Configuration for Estimating the Prediction Errors of Dynamical Climate Model in North China;Yang;Acta Phys. Sin.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3