Effects of Antecedent Precipitation Amount and COVID-19 Lockdown on Water Quality along an Urban Gradient

Author:

Ramirez Daniel,Chang HeejunORCID,Gelsey Katherine

Abstract

Water quality is affected by multiple spatial and temporal factors, including the surrounding land characteristics, human activities, and antecedent precipitation amounts. However, identifying the relationships between water quality and spatially and temporally varying environmental variables with a machine learning technique in a heterogeneous urban landscape has been understudied. We explore how seasonal and variable precipitation amounts and other small-scale landscape variables affect E. coli, total suspended solids (TSS), nitrogen-nitrate, orthophosphate, lead, and zinc concentrations in Portland, Oregon, USA. Mann–Whitney tests were used to detect differences in water quality between seasons and COVID-19 periods. Spearman’s rank correlation analysis was used to identify the relationship between water quality and explanatory variables. A Random Forest (RF) model was used to predict water quality using antecedent precipitation amounts and landscape variables as inputs. The performance of RF was compared with that of ordinary least squares (OLS). Mann–Whitney tests identified statistically significant differences in all pollutant concentrations (except TSS) between the wet and dry seasons. Nitrate was the only pollutant to display statistically significant reductions in median concentrations (from 1.5 mg/L to 1.04 mg/L) during the COVID-19 lockdown period, likely associated with reduced traffic volumes. Spearman’s correlation analysis identified the highest correlation coefficients between one-day precipitation amounts and E. coli, lead, zinc, and TSS concentrations. Road length is positively associated with E. coli and zinc. The Random Forest (RF) model best predicts orthophosphate concentrations (R2 = 0.58), followed by TSS (R2 = 0.54) and nitrate (R2 = 0.46). E. coli was the most difficult to model and had the highest RMSE, MAE, and MAPE values. Overall, the Random Forest model outperformed OLS, as evaluated by RMSE, MAE, MAPE, and R2. The Random Forest was an effective approach to modeling pollutant concentrations using both categorical seasonal and COVID data along with continuous rain and landscape variables to predict water quality in urban streams. Implementing optimization techniques can further improve the model’s performance and allow researchers to use a machine learning approach for water quality modeling.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference40 articles.

1. Response of discharge, TSS, and E. coli to rainfall events in urban, suburban, and rural watersheds;Chen;Environ. Sci. Process. Impacts,2014

2. Influence of Variable Precipitation on Coastal Water Quality in Southern California;Dwight;Water Environ. Res.,2011

3. Fish, N., and Jordan, M. (2021, July 27). Portland Area Watershed Monitoring and Assessment Program. Executive Summary—Findings from Years 1–4, Available online: https://www.portlandoregon.gov/bes/article/689921.

4. The effects of land use characteristics on urban stormwater quality and watershed pollutant loads;Yazdi;Sci. Total Environ.,2021

5. Key Factors Affecting Temporal Variability in Stream Water Quality;Guo;Water Resour. Res.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3