Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades

Author:

Ouyang Ying1ORCID,Stanturf John A.23ORCID,Williams Marcus D.4,Botmann Evgeniy5,Madsen Palle3ORCID

Affiliation:

1. USDA Forest Service, Center for Bottomland Hardwoods Research, Southern Research Station, 775 Stone Blvd., Thompson Hall, Room 309, Mississippi State, MS 39762, USA

2. Institute of Forestry and Engineering, Estonian University of Life Sciences, 51014 Tartu, Estonia

3. InNovaSilva, ApS, 7100 Vejle, Denmark

4. Center for Forest Health and Disturbance, US Forest Service, Athens, GA 30602, USA

5. Research Institute of Forestry, Tashkent 100174, Uzbekistan

Abstract

Estimation of hydrological processes is critical to water resource management, water supply planning, ecological protection, and climate change impact assessment. Mountains in Central Asia are the major source of water for rivers and agricultural practices. The disturbance of mountain forests in the region has altered the hydrological processes and accelerated soil erosion, mudflow, landslides, and flooding. We used the SWAT (Soil and Water Assessment Tool) model calibrated and validated with remote sensing data to quantify the mountainous hydrological processes in the Aktash River watershed (ARW) of Uzbekistan, Central Asia. Simulations showed that the daily surface runoff and streamflow closely responded to daily precipitation. Groundwater discharge reached its maximum in winter because of snowmelt. The wet months were from July to December, and the dry months were from January to June. The magnitudes of the seasonal hydrological processes were in the following order: fall > summer > winter > spring for precipitation and surface runoff; summer > spring > fall > winter for evapotranspiration (ET); winter > spring > fall > summer for snowmelt; fall > winter > summer > spring for water yield and streamflow; and winter > fall > spring > summer for groundwater discharge. The Mann–Kendall statistical test revealed a significant increasing trend for the annual precipitation (τ = 0.45, p < 0.01) and surface runoff (τ = 0.41, p < 0.02) over the past 17 years from 2003 to 2019. Compared to rangeland, forested land decreased monthly and annual average surface runoff by 20%, and increased monthly and annual average groundwater recharge by about 5%. Agricultural land had much higher unit-area values (mm/km2/y) of ET, groundwater recharge, and water yield than those of urban, forest, and range lands. Our research findings provide useful information to farmers, foresters, and decision makers for better water resource management in the ARW, Central Asia, and other mountain watersheds with similar conditions.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3