Unveiling the Benefits of Artificial Ecological Measures: Water Conveyance Improves the Water Quality of the Taitema Lake, Northwestern China

Author:

Aili Aishajiang1ORCID,Xu Hailiang1,Waheed Abdul1ORCID,Zhao Xinfeng1,Zhang Peng1

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

Taitema Lake, situated at the terminus of the Tarim River Basin in Northwest China, represents a crucial ecological resource impacted by climate variability and anthropogenic interventions. In this study, we investigate the dynamic changes in Taitema Lake’s area and water quality resulting from the implementation of an ecological water transfer project in 2000. Leveraging Landsat remote sensing data and comprehensive water quality monitoring, we analyzed the relationship between lake area variations and shifts in water quality parameters. Notably, our findings reveal a significant increase in Taitema Lake’s area from 9.4 km2 in 2000 to 320 km2 in 2013. Concurrently, water quality indicators exhibited marked fluctuations, with total salt content ranging from 45,323.6 mg/L in 2000 to 970.4 mg/L in 2010 before increasing to 14,586.3 mg/L by 2014. Furthermore, a linear regression analysis highlights the moderate positive correlation between lake area and mineralization (R2 = 0.506) and sodium levels (R2 = 0.4907). Additionally, chloride (R2 = 0.5681) and sulfate (R2 = 0.6213) concentrations demonstrated a strong negative correlation with the lake area, indicative of a dilution effect. Furthermore, a comparison of water quality indicators between the years of minimum (2008) and maximum (2013) lake area underscores improvements in pH, chemical oxygen demand, and anionic surfactant concentrations as the lake area increased. Our study provides valuable insights into the effectiveness of ecological water management strategies in restoring and maintaining the ecological health of Taitema Lake, thereby informing evidence-based decision-making for the sustainable management of freshwater resources in arid environments.

Funder

Natural Science Foundation of Xinjiang Uyghur Autonomous Region

Land Comprehensive Improvement Center of Xinjiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3