Estimation of Incoming Sediments and Useful Life of Haditha Reservoir with Limited Measurements Using Hydrological Modeling

Author:

Ajaaj Aws1,Khan Abdul1ORCID,Mishra Ashok2,Alhathloul Saleh3

Affiliation:

1. Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

2. Zachary Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX 77840, USA

3. Civil Engineering Department, King Saud University, Riyadh 12372, Saudi Arabia

Abstract

Many dammed reservoirs in dry climate conditions witness high sediment inflow rates due to higher soil erodibility, yet there are limited actual sediment influx measurements. Therefore, this study first applies the Soil and Water Assessment Tool (SWAT) hydrologic model to simulate reservoir sedimentation inflow to the Haditha Reservoir. Next, utilizing sediment inflows estimated by the SWAT model, the Trap Efficiency Function (TEF) is employed to estimate its remaining storage capacity and its useful life at multiple reservoir water levels. Calibration (1986–1997) and validation (1998–2007) of the SWAT model were conducted at three streamflow gaging stations and one sediment station located upstream of the reservoir. Results show that the SWAT model performed better during calibration than during the validation period for all streamflow and sediment gaging stations. In addition, modeled streamflow and sediment predictions were relatively more accurate on a monthly scale than on a daily scale. Simulated daily sediment inflow to the reservoir demonstrates slightly lower accuracy than daily streamflow, where the Coefficient of Determination (R2) and Nash-Sutcliffe Efficiency values are 0.34 and 0.32 in the case of sediment load, compared to 0.39 and 0.33 for streamflow, respectively. Reservoir storage capacity for the period (1986–2005) shows a continuous decrease with time at all reservoir water levels, which indicates an increase in sediment accumulation. According to measurements taken between 1986 and 2005, sediment accumulation has reduced the reservoir’s capacity by approximately 15% at a water level of 112 m (the lowest water level in the reservoir). During the same period, the storage capacity loss at 147 m (the design working water level in the reservoir) was calculated to be 35%. Over 19 years of operation (1986–2005) at the 147-m water level, the total sediment buildup in the reservoir is estimated at 3.2 million tons. Notably, about one-third of this sediment was deposited in the five-year span from 2000 to 2005.

Publisher

MDPI AG

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3