A Monte Carlo Model for WWTP Effluent Flow Treatment through Enhanced Willow Evapotranspiration

Author:

Tegos Aristoteles12

Affiliation:

1. Laboratory of Hydrology and Water Resources Development, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece

2. TOBIN, Block 10-4, Blanchardstown Corporate Park, D15 X98N Dublin, Ireland

Abstract

The effectiveness of using enhanced evapotranspiration rates of willow plantation is a modern environmentally friendly practice for advanced treatment of effluent WWTP flow. The key idea is that through advanced willow evapotranspiration rates, a significant proportion of the effluent flow can be transferred into the atmosphere through the physical process of evapotranspiration. This study further discusses the concept in a real-world problem using a wide dataset consisting of a recent PET monthly remote dataset namely RASPOTION, monthly recorded rainfall gauge, and experimental willow evapotranspiration surveys across Ireland, to identify the monthly cropping pattern. A Monte Carlo water balance model has been developed for the period 2003–2016. The model was applied in an existing willow plantation at Donard WWTP co. Wicklow, Ireland to identify the exceedance probability of willow plantation runoff against estimated low flows (i.e., Q95, Q99) at the adjacent small tributary. In this case study, any failure which can lead to river quality deterioration was not assessed. The overall framework aims to provide new insights considering the multiple sources of uncertainty (i.e., monthly willow cropping pattern and WWTP effluent flow) in associated environmental engineering problems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3