Abstract
This paper presents a comparative geometric analysis of the conditional bias (CB)-informed Kalman filter (KF) with the Kalman filter (KF) in the Euclidean space. The CB-informed KFs considered include the CB-penalized KF (CBPKF) and its ensemble extension, the CB-penalized Ensemble KF (CBEnKF). The geometric illustration for the CBPKF is given for the bi-state model, composed of an observable state and an unobservable state. The CBPKF co-minimizes the error variance and the variance of the Type-II error. As such, CBPKF-updated state error vectors are larger than the KF-updated, the latter of which is based on minimizing the error variance only. Different error vectors in the Euclidean space imply different eigenvectors and covariance ellipses in the state space. To characterize the differences in geometric attributes between the two filters, numerical experiments were carried out using the Lorenz 63 model. The results show that the CBEnKF yields more accurate confidence regions for encompassing the truth, smaller errors in the ensemble mean, and larger norms for Kalman gain and error covariance matrices than the EnKF, particularly when assimilating highly uncertain observations.
Funder
National Key Research and Development Program
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献