Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression

Author:

Singh Pooja1,Shamseldin Asaad Y.1,Melville Bruce W.1,Wotherspoon Liam1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New Zealand

Abstract

This paper applied the fuzzy function approach, combined with the ridge regression model, to produce daily rainfall projections from large-scale climate variables. This study developed a statistical downscaling model based on principal components, c-means fuzzy clustering, Volterra series, and ridge regression. The model is known, hereafter as SDC2R2. In the developed downscaling model, the use of ridge regression, instead of multiple linear regression, is proposed to downscale daily rainfall with wide range (WR) predictors. The WR predictors were applied to sufficiently incorporate climate change signals. The developed model also captured the non-linear interactions of the climate variables by applying the transformation of Volterra series realization over WR predictors. This transformation was performed by applying principal components as orthogonal filters. Further, these principal components were clustered by using c-means clustering and non-linear transformations were applied on these membership functions, to improve the prediction ability of the model. The reanalysis of climate data from the National Centres for Environmental Prediction (NCEP) was used to develop the model and was validated by using the Global Climate Model (GCM) for four locations in the Manawatu River basin. The developed model was used to obtain future daily rainfall projections from three Representative Concentrative Pathways (RCP 2.6, RCP 4.5, and RCP 8.5) scenarios from the Canadian Earth System Model (CanESM2) GCM. The performance of the model was compared with a widely used statistical downscaling model (SDSM). It was observed that the model performed better than SDSM in downscaling rainfall on a daily basis. Every scenario indicated that there is a probability of obtaining high future rainfall frequency. The results of this study provide valuable information for decision-makers since climate change may potentially impact the Manawatu basin.

Publisher

MDPI AG

Reference58 articles.

1. Statistical Downscaling of Rainfall under Transitional Climate in Limbang River Basin by Using SDSM;Tahir;IOP Conf. Ser. Earth Environ. Sci.,2018

2. Statistical Downscaling of Multisite Daily Precipitation for Tapi Basin Using Kernel Regression Model;Singh;Curr. Sci.,2016

3. Munawar, S., Rahman, G., Farhan, M., Moazzam, U., Miandad, M., Ullah, K., Al-ansari, N., Thi, N., and Linh, T. (2022). Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere, 13.

4. Assessment of Climate Extremes in Future Projections Downscaled by Multiple Statistical Downscaling Methods over Pakistan;Ali;Atmos. Res.,2019

5. Statistical Downscaling of Precipitation: State-of-the-Art and Application of Bayesian Multi-Model Approach for Uncertainty Assessment;Hashmi;Hydrol. Earth Syst. Sci. Discuss.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3