Assessing Digital Soil Inventories for Predicting Streamflow in the Headwaters of the Blue Nile

Author:

Adem Anwar A.,Dile Yihun T.,Worqlul Abeyou W.ORCID,Ayana Essayas K.,Tilahun Seifu A.,Steenhuis Tammo S.ORCID

Abstract

Comprehensive spatially referenced soil data are a crucial input in predicting biophysical and hydrological landscape processes. In most developing countries, these detailed soil data are not yet available. The objective of this study was, therefore, to evaluate the detail needed in soil resource inventories to predict the hydrologic response of watersheds. Using three distinctively different digital soil inventories, the widely used and tested soil and water assessment tool (SWAT) was selected to predict the discharge in two watersheds in the headwaters of the Blue Nile: the 1316 km2 Rib watershed and the nested 3.59 km2 Gomit watershed. The soil digital soil inventories employed were in increasing specificity: the global Food and Agricultural Organization (FAO), the Africa Soil Information Service (AfSIS) and the Amhara Design and Supervision Works Enterprise (ADSWE). Hydrologic simulations before model calibration were poor for all three soil inventories used as input. After model calibration, the streamflow predictions improved with monthly Nash–Sutcliffe efficiencies greater than 0.68. Predictions were statistically similar for the three soil databases justifying the use of the global FAO soil map in data-scarce regions for watershed discharge predictions.

Funder

United States Agency for International Development

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference63 articles.

1. Assessment of soil spatial variability at multiple scales

2. Soil variability: A late 20th century view;Burrough;Soils Fert.,1993

3. Accounting for variability within map units when linking a pesticide fate model to soil survey

4. Impact of Spatial Variability on Interpretive Modeling

5. FAO Soils Portal http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3