Abstract
In developing countries with data scarcity challenges, an integrated approach is required to enhance the estimation of streamflow variability for the design of water supply systems, hydropower generation, environmental flows, water allocation and pollution studies. The Flow Duration Curve (FDC) was adopted as a tool that is influenced by topography, land use land cover, discharge and climate change. The data from Global Climate Model (GCM) projections, based on Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 climate scenarios, were used as input data for the SWAT model for the simulation of streamflow. The FDCs were then derived from the simulated streamflow. The FDC for RCP 4.5 showed insignificant differences, whilst for RCP 8.5 it showed an increase of 5–10% in FDC from the baseline period, which is likely to increase the hydropower generation potential with some considerable streamflow variability. The integrated approach of utilizing FDC, GIS and SWAT for the estimation of flow variability and hydropower generation potential could be useful in data scarce regions.
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献