Discerning Watershed Response to Hydroclimatic Extremes with a Deep Convolutional Residual Regressive Neural Network

Author:

Larson Albert1ORCID,Hendawi Abdeltawab2ORCID,Boving Thomas13ORCID,Pradhanang Soni M.3ORCID,Akanda Ali S.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, USA

2. Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA

3. Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA

Abstract

The impact of climate change continues to manifest itself daily in the form of extreme events and conditions such as droughts, floods, heatwaves, and storms. Better forecasting tools are mandatory to calibrate our response to these hazards and help adapt to the planet’s dynamic environment. Here, we present a deep convolutional residual regressive neural network (dcrrnn) platform called Flux to Flow (F2F) for discerning the response of watersheds to water-cycle fluxes and their extremes. We examine four United States drainage basins of varying acreage from smaller to very large (Bear, Colorado, Connecticut, and Mississippi). F2F combines model and ground observations of water-cycle fluxes in the form of surface runoff, subsurface baseflow, and gauged streamflow. We use these time series datasets to simulate, visualize, and analyze the watershed basin response to the varying climates and magnitudes of hydroclimatic fluxes in each river basin. Experiments modulating the time lag between remotely sensed and ground-truth measurements are performed to assess the metrological limits of forecasting with this platform. The resultant mean Nash–Sutcliffe and Kling–Gupta efficiency values are both greater than 90%. Our results show that a hydrological machine learning platform such as F2F can become a powerful resource to simulate and forecast hydroclimatic extremes and the resulting watershed responses and natural hazards in a changing global climate.

Funder

Fellowship from the National Space Grant College

Fellowship Program—Opportunities in NASA

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3