Assessing the Microclimate Effects and Irrigation Water Requirements of Mesic, Oasis, and Xeric Landscapes

Author:

Saher Rubab,Middel ArianeORCID,Stephen HaroonORCID,Ahmad SajjadORCID

Abstract

Urban irrigation is an essential process in land–atmosphere interactions. It is one of the uncertain parameters of urban hydrology due to various microclimates. This study investigated the microclimate effects and irrigation water requirements of three landscape types in an arid region of Phoenix, AZ. The microclimate effect encompassed surface temperature, air temperature, and wind speed. The simulations of the three landscapes were conducted using ENVI-met software for the hottest day of the year (23 June 2011). The simulated model was validated using ground data. Results show that the mesic landscape induced cooling effects, both in the daytime and nighttime, by reducing surface and air temperatures. However, the mesic landscape showed high-water consumption because of a high leaf area density. The oasis landscape showed 2 °C more daytime cooling than the mesic landscape, but the nighttime warming (surface temperature) was comparable to the xeric landscape. The potential irrigation water requirement was 1 mm/day lower than the mesic landscape. Moreover, microclimate conditions varied spatially in each neighborhood. The xeric landscape showed lower wind speeds and air temperatures between the buildings. The wind speed variations in the three landscapes were inconclusive due to differences in building orientations and discrepancies in trees’ heights. The findings can have implications for restricting the municipal irrigation budget. In addition, they can help water managers in choosing a landscape in urban areas. Urban scientists can adapt the methodology to quantify urban ET in arid regions.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference68 articles.

1. Efficient Water Use in Residential Urban Landscapes

2. How Smart Are ‘Water Smart Landscapes’? http://arxiv.org/abs/1803.04593

3. Evaluating the effects of turf-replacement programs in Los Angeles

4. Xeriscape Conversion Study Final Report by Area http://www.allianceforwaterefficiency.org/Xeriscape_Water_Savings.aspx

5. ET come home: potential evapotranspiration in geographical ecology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3