Assessment and Mitigation of Groundwater Contamination from Phosphate Mining in Tunisia: Geochemical and Radiological Analysis

Author:

Hamed Younes12,Gentilucci Matteo3ORCID,Mokadem Naziha2ORCID,Khalil Rayan4ORCID,Ayadi Yosra5,Hadji Riheb6ORCID,Elaloui Elimame1

Affiliation:

1. Laboratory for the Application of Materials to the Environment, Water and Energy, University Campus, Gafsa 2112, Tunisia

2. Faculty of Science of Gafsa, University of Gafsa, Gafsa 2112, Tunisia

3. School of Science and Technology, Geology Division, University of Camerino, Via Gentile III da Varano, 7, 62032 Camerino, Italy

4. Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

5. Department of Chemistry, Faculty of Science of Gabes, University of Gabes, Gabes 6029, Tunisia

6. Laboratory of Applied Research in Engineering Geology, Geotechnics, Water Sciences, and Environment, Setif 1 University, Setif 19000, Algeria

Abstract

Groundwater contamination in the Mediterranean Basin is a severe problem that has a significant impact on environmental ecosystems and human health. The unconventional uranium and the potentially toxic elements (PTEs) of phosphate rocks are the principal contaminants in the phosphate mining industry in Tunisia. Phosphogypsum (PG) results from the valorization of phosphate to fertilizers and phosphoric acid. PG stocks can be used in cement production, brick manufacturing, and soil amendments in desertic land, and can be resolved by using nanomaterial adsorbents. In the flat area of the study area, the increase in radioactivity (40K) is due to abusive fertilizer use. Geochemical and radiological analyses in the northern part of Tunisia and its karst shallow aquifer indicate significant contamination levels. The northern part exhibits moderate contamination, whereas the karst shallow aquifer shows higher contamination levels, particularly with elevated nitrate concentrations. In the phosphate basin, both washing phosphate and phosphogypsum reveal high levels of radioactive elements, with the latter showing especially high concentrations of radium. The shallow aquifer in this region has moderate contamination levels, while the deep geothermal aquifer also shows noticeable contamination but to a lesser degree compared to the shallow aquifer. The shallow groundwater is characterized by a higher value of radioactivity than the groundwater due to the contamination impact from the phosphate industry and the cumulative radioactivity disintegration. Finally, the nanoparticles and the electrostatic adsorption can decrease the PTEs and radionuclides from the contaminated water in the study area. Moreover, other key issues for advancing research on groundwater contamination are proposed in this study. It is time to valorize this PG and the other mines of (Fe, Pb, and Zn) in the socioeconomic sector in Tunisia and to minimize the environmental impact of the industrial sector’s extraction on groundwater and human health in the study area.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3