Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin

Author:

Areerachakul Nathaporn,Prongnuch Sethakarn,Longsomboon Peeranat,Kandasamy Jaya

Abstract

This study of the Quantitative Estimation Precipitation (QEP) of rainfall, detected by two Meteorology Radars over Chi Basin, North-east Thailand, used data from the Thai Meteorological Department (TMD). The rainfall data from 129 rain gauge stations in the Chi Basin area, covering a period of two years, was also used. The study methodology consists of: firstly, deriving the QPE between radar and rainfall based on meteorological observations using the Marshall Palmer Stratiform, the Summer Deep Convection, and Regression Model and calibrating with rain gauge station data; secondly, Bias Correction using statistical method; thirdly, determining spatial variation using three methods, namely Kriging, Inverse Distance Weight (IDW), and the Minimum Curvature Method. The results of the study demonstrated the accuracy of estimating precipitation using meteorological radar. Estimated precipitation compared against an equivalent of 2 years of rain station measurement had a probability of detection (POD) of 0.927, where a value of 1 indicated perfect agreement, demonstrating the effectiveness of the method used to calibrate the radar data. The bias correction method gave high accuracy compared with measured rainfall. Furthermore, of the spatial estimation of rainfall methods, the Kriging methodology showed the best fit between estimation of rainfall distribution and measured rainfall distribution. Therefore, the results of this study showed that the rainfall estimation, using data from a meteorology radar, has good accuracy and can be useful, especially in areas where it is not possible to install and operate rainfall measurement stations, such as in heavily forested areas and/or in steep terrain. Additionally, good accuracy rainfall data derived from radar data can be integrated with other data used for water management and natural disasters for applications to reduce economic losses, as well as losses of life and property.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3