Reconstruction of Recharge and Discharge Pattern in the Polder Drainage Canal Network

Author:

Gilja Gordon1ORCID,Kuspilić Neven1,Lacko Martina1,Romić Davor2ORCID

Affiliation:

1. Department of Hydroscience and Engineering, Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kacica Miosica 26, 10000 Zagreb, Croatia

2. Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia

Abstract

Rainfed agriculture is dependent on rainfall and runoff patterns, especially in lowland areas that rely on pumping operation to remove excess water from the drainage network. Polder areas are extremely vulnerable to saltwater intrusion and subsequent soil salinization driven by rising sea levels and accelerated by climate change. The aim of this paper is to reconstruct the recharge and discharge pattern in the Vidrice polder, a drainage canal network within the Neretva River Delta agroecosystem used to collect the surface and subsurface runoff from the agricultural land and saltwater infiltration through the aquifer. Water regime data are collected over an 18-month period of real-time monitoring at 15 min intervals on three stations along the primary drainage canal and one station at the secondary canal. Analysis of water level flashiness in the Vidrice polder using the Richards-Baker flashiness index (R-Bindex) indicates that daily pumping of water infiltrated in the canal network is sub-optimal: discharge fluctuates significantly more than recharge, by 46% on average, resulting in unnecessary lowering of the water level in the drainage network. The results show that the correlation between the intensive rainfall events (>10 mm/day) and the recharge rates can be used to modify the daily pumping operation and maintain high freshwater levels in the canal network to increase the resistance to infiltration and reduce saltwater intrusion into the polder.

Funder

European Regional Development Fund

Environmental Protection and Energy Efficiency Fund of the Republic of Croatia

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3