Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches

Author:

Rashid Niaghi AliORCID,Hassanijalilian OveisORCID,Shiri JalalORCID

Abstract

Evapotranspiration (ET) is widely employed to measure amounts of total water loss between land and atmosphere due to its major contribution to water balance on both regional and global scales. Considering challenges to quantifying nonlinear ET processes, machine learning (ML) techniques have been increasingly utilized to estimate ET due to their powerful advantage of capturing complex nonlinear structures and characteristics. However, limited studies have been conducted in subhumid climates to simulate local and spatial ETo using common ML methods. The current study aims to present a methodology that exempts local data in ETo simulation. The present study, therefore, seeks to estimate and compare reference ET (ETo) using four common ML methods with local and spatial approaches based on continuous 17-year daily climate data from six weather stations across the Red River Valley with subhumid climate. The four ML models have included Gene Expression Programming (GEP), Support Vector Machine (SVM), Multiple Linear Regression (LR), and Random Forest (RF) with three input combinations of maximum and minimum air temperature-based (Tmax, Tmin), mass transfer-based (Tmax, Tmin, U: wind speed), and radiation-based (Rs: solar radiation, Tmax, Tmin) measurements. The estimates yielded by the four ML models were compared against each other by considering spatial and local approaches and four statistical indicators; namely, the root means square error (RMSE), the mean absolute error (MAE), correlation coefficient (r2), and scatter index (SI), which were used to assess the ML model’s performance. The comparison between combinations showed the lowest SI and RMSE values for the RF model with the radiation-based combination. Furthermore, the RF model showed the best performance for all combinations among the four defined models either spatially or locally. In general, the LR, GEP, and SVM models were improved when a local approach was used. The results showed the best performance for the radiation-based combination and the RF model with higher accuracy for all stations either locally or spatially, and the spatial SVM and GEP illustrated the lowest performance among the models and approaches.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3