Stable Isotopic Evaluation of Recharge into a Karst Aquifer in a Glaciated Agricultural Region of Northeastern Wisconsin, USA

Author:

Luczaj John A.1ORCID,Konrad Amber1,Norfleet Mark2,Schauer Andrew3

Affiliation:

1. Department of Natural & Applied Sciences, University of Wisconsin—Green Bay, Green Bay, WI 54311, USA

2. Resch School of Engineering, University of Wisconsin—Green Bay, Green Bay, WI 54311, USA

3. IsoLab, Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA

Abstract

Ground water contamination from septic systems and the application of dairy cattle manure has been a long-standing problem in rural northeastern Wisconsin, especially in areas with thin soils over karstified Silurian dolostone bedrock, where as many as 60% of the wells show evidence of fecal contamination. We present the results of a citizen science supported water-isotope study in Kewaunee County, Wisconsin to evaluate aquifer recharge processes in the critical zone and to demonstrate the viability of time-series stable isotope data as a supplement to traditional water quality indicators in a contamination-prone aquifer. A meteoric water line was also constructed for Green Bay, Wisconsin, providing reasonable isotopic ranges for aquifer recharge events. Volunteer homeowners collected water samples from their domestic wells for a period of ~14 months to provide a measure of long-term isotopic variation in produced water and to determine whether event-driven responses could be identified using δ18O and δ2H isotopic values. Three shallower wells with a prior history of contamination exhibited significant seasonal variation, while the deepest well with the greatest soil thickness (above bedrock) showed less variation. For moderate precipitation events, the shallowest well showed as much as 5–13% of produced water coming from direct recharge, with smaller contributions for deeper wells. Our case study provides a clear example of how citizen science can collect useful time-series isotopic data to support groundwater recharge studies.

Funder

University of Wisconsin—Green Bay, including the Research Council, the Cofrin Center for Biodiversity’s Heirloom Plant Sale Fund, and the Geoscience Fund

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Desertification in karst areas: A review;Earth-Science Reviews;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3