Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data

Author:

Chen ZongyouORCID,Wang Junfang,Tang Jianmin,Wang Zhengfeng,Chai Shengfeng,He Xingjin,Wei Xiao

Abstract

Camellia nitidissima Chi, is a rare and endangered plant that is narrowly distributed in South China and North Vietnam. In this study, seven polymorphic microsatellite markers were used to investigate the genetic diversity, recent population bottlenecks as well as population structure of twelve remnant populations of the plant. Our results indicated that, despite their severely fragmented natural range, C. nitidissima remnants maintained a moderate level of genetic variability, and only a bottlenecked population was detected by the clear evidences. No significant correlation was found between genetic diversity and population size. Significantly high genetic differences among populations were found, and the twelve populations could be classified into two distinct genetic groups. AMOVA indicated that 16.14% (16.73%, after one suspected artificial population was excluded) of the molecular variation was attributable to regional divergences (between Nanning and Fangcheng), and the majority of genetic variation existed within populations which were 69.24% (70.63%, after one suspected artificial population was excluded). For conservation management plans, the genetic resources of the two distinct groups are of equal importance for conservation, separate management unit for each of them should be considered. Given that all remnant populations are small and isolated, and many plants are illegally dug out for commercial purposes, management efforts in terms of habitat protection and legal protection, as well as transplantations and reintroductions, would be necessary for this species.

Funder

National Natural Science Foundation of China

The Key Research and Development Project of Guangxi

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3