Influence of Flight Height and Image Sensor on the Quality of the UAS Orthophotos for Cadastral Survey Purposes

Author:

Sertić Hrvoje,Paar RinaldoORCID,Tomić HrvojeORCID,Ravlić Fabijan

Abstract

The possibility of using unmanned aircraft systems (UAS) for cadastral survey purposes was investigated in this research. A study site consisting of 26 ground control points (GCP) and checkpoints (CP) was established. The study site was first measured by the classical methods of geodetic surveying, i.e., by the polar method using a total station. After that, all points were additionally measured by the Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) method. The GNSS RTK method was used to determine the coordinates of all points in the official map projection of Croatia, HTRS96/TM, while the polar method was used to increase the positional “strength” of points in all directions, i.e., to improve the relative accuracy between them. Using UASs with different image sensor characteristics, the study site was measured by an aerial photogrammetry method at different flight heights with the purpose of obtaining a high-quality digital orthophoto plan (DOF). The absolute orientation of the model was performed using the external orientation data of each digital image based on GNSS and Inertial Measurement Unit (IMU) UAS’s sensors, as well as using GCPs. Achieved precision of obtained DOF, as well as accuracy analysis of aerial photogrammetry was performed by considering the adjusted survey data collected by classical and GNSS RTK methods as true values and comparing them with the coordinates obtained by the aerial photogrammetry method from DOFs. Based on the achieved results and conclusions obtained from the study site, the second field test was performed above a small settlement which served as an area for cadastral survey using the UAS and GNSS RTK method. Again, precision and accuracy were determined, based on which we derived recommendations and conclusions for using UASs for cadastral survey purposes.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3