Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China

Author:

Zhang MaomaoORCID,Kafy Abdulla-AlORCID,Ren Bing,Zhang YanweiORCID,Tan Shukui,Li Jianxing

Abstract

The ecological environment is important for the survival and development of human beings, and objective and accurate monitoring of changes in the ecological environment has received extensive attention. Based on the normalized difference vegetation index (NDVI), wetness (WET), normalized differential build-up and bare soil index (NDBSI), and land surface temperature (LST), the principal component analysis method is used to construct a comprehensive index to evaluate the ecological environment’s quality. The R package “Relainpo” is used to estimate the relative importance and contribution rate of NDVI, WET, NDBSI, and LST to the remote sensing ecological index (RSEI). The optimal parameter geographic detector (OPGD) model is used to quantitatively analyze the influencing factors, degree of influence, and interaction of the RSEI. The results show that from 2001 to 2020, the area with a poor grade quality of the RSEI in Guangzhou decreased from 719.2413 km2 to 660.4146 km2, while the area with an excellent quality grade of the RSEI increased from 1778.8311 km2 to 1978.9390 km2. The NDVI (40%) and WET (35%) contributed significantly to the RSEI, while LST and NDBSI contributed less to the RSEI. The results of single factor analysis revealed that soil type have the greatest impact on the RSEI with a coefficient (Q) of 0.1360, followed by a temperature with a coefficient (Q) of 0.1341. The interaction effect of two factors is greater than that of a single factor on the RSEI, and the interaction effect of different factors on the RSEI is significant, but the degree of influence is not consistent. This research may provide new clues for the stabilization and improvement of ecological environmental quality.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3