Landscape Impacts on Ecosystem Service Values Using the Image Fusion Approach

Author:

Wang Shuangao,Padmanaban RajchandarORCID,Shamsudeen MohamedORCID,Campos Felipe S.ORCID,Cabral PedroORCID

Abstract

The landscape is a complex mosaic of physical and biological patches with infrastructures, cultivable lands, protected ecosystems, water bodies, and many other landforms. Varying land-use changes are vulnerable to the world and need the mitigation and management of landforms to achieve sustainable development, which without proper oversight, may lead to habitat destruction, degradation, and fragmentation. In this study, we quantify the land-use and land-cover (LULC) changes using downscaled satellite imagery and assess their effects on ecosystem services (ES) and economic values in Ningxia Province, China. Various landscape metrics are derived to study the pattern and spatial configuration over 15 years (2005–2020), in which the landscapes are evolving. The impact of LULC change in various ES is analyzed using ecosystem service values (ESV) and validated with a sensitivity index. Finally, the level of urban sprawl (US) due to overpopulation is established using Renyi’s entropy. Using Landsat 8′s Operational Land Imager (OLI) datasets, we downscaled the MODIS data of 2005, 2010, 2015, and 2020 to prepare the LULC map through a rotation forest algorithm. Results demonstrate that water bodies, woodlands, and built-up landscapes increased in their spatial distribution over time and that there was a decrease in farmlands. Results further suggest that the connectivity and uniformity of the landscape pattern improved in the later period due to several plans formulated by the government with a slight improvement in landscape diversity. Overall ESV get improved, while LULC classes such as farmland and water bodies have decreased and increased ESV, respectively, and a sensitivity analysis is used to test the reliability of ESV on LULC classes. The level of US is 0.91 in terms of Renyi’s entropy, which reveals the presence of a dispersion of settlements in urban fringes. The simulated US for 2025 shows urbanization is more severe over a prolonged time and finally the impacts of the US in ESV are analyzed. Using an interdisciplinary approach, several recommendations are formulated to maintain the ESV despite rapid LULC changes and to achieve sustainable development globally.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3