Large Shear Strength Parameters for Landslide Analyses on Highly Weathered Flysch

Author:

Anagnostopoulou SofiaORCID,Depountis NikolaosORCID,Sabatakakis Nikolaos,Pelekis Panagiotis

Abstract

Many significant landslide movements are often observed in the upper weathering zone of flysch, which constitutes the most critical landslide-prone geological formation in Western Greece. In this article, a laboratory approach is adopted to investigate the behavior of highly weathered and tectonically decomposed flysch for slope stability analyses with the performance of large shear testing in reconstituted soil specimens. The testing program included several reconstituted flysch specimens derived from three representative landslides. Tests under large direct shearing (300 × 300 × 120 mm) were conducted in moisture- and density-controlled conditions and ring shear tests were conducted in the finer material. The test results revealed that the values of the effective angle of friction in the flysch material decrease with the increasing water content. Moreover, dense specimens showed curved failure envelopes due to dilatancy, especially in dry conditions. A comparison of laboratory test results with those obtained by performing back-analyses under saturated conditions has shown that the sliding of the weathered and decomposed flysch mainly depends on its residual angle of friction which was found to be 1°–6° lower than the ultimate angle of friction as it was estimated by the large shear tests.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3