Spatial Pattern of Soil Erosion in Relation to Land Use Change in a Rolling Hilly Region of Northeast China

Author:

Zhu Yuanli,Li Wenbo,Wang Dongyan,Wu Zihao,Shang Peng

Abstract

The black soil region in Northeast China is one of the major grain-producing areas of China. Soil erosion in the black soil region caused by natural factors and anthropic activities has attracted much attention, especially in a rolling hilly region. Compared with natural factors, the land use factor of cropland encompasses the most easily optimized measures. Jiutai County of Changchun City, located in the hilly areas of Northeast China, was taken as an example to calculate the soil erosion modulus using the Revised Universal Soil Loss Equation model. The overall soil erosion status of cultivated land in the study area was mainly slight and light, the proportion of cultivated land affected by extremely intensive and severe erosion was relatively small, and the average soil erosion modulus was 7.09 t·hm−2·a−1 in 2019. In view of spatial distribution characteristics of soil erosion revealed by the spatial aggregation and hot spot analysis, the most serious soil erosion intensity was concentrated in the southeast and northeast sloping farmland over 8°. With the increase in elevation and topographic slope, the proportion of slight and light soil erosion gradually decreased, which was closely related to the increase in soil erodibility caused by the space–time migration of soil organic carbon caused by the interaction of hydraulic and tillage erosion in complex topographic areas. The Geographically Weighted Regression model was introduced to explore the driving factors and superposition mechanism of farmland soil erosion in the hilly region of Northeast China. Based on the relationship between soil erosion and landscape fragmentation, landscape fragmentation was an important driving force promoting soil erosion, sediment yield, and sediment transport. This paper is committed to providing a basis for accurately deploying regional soil and water conservation measures and formulating macro land management policies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3