Analyzing Resilience in the Greater Yellowstone Ecosystem after the 1988 Wildfire in the Western U.S. Using Remote Sensing and Soil Database

Author:

Li HangORCID,Speer James H.ORCID,Thapa Ichchha

Abstract

The 1988 Yellowstone fire altered the structure of the local forest ecosystem and left large non-recovery areas. This study assessed the pre-fire drivers and post-fire characteristics of the recovery and non-recovery areas and examined possible reasons driving non-recovery of the areas post-fire disturbance. Non-recovery and recovery areas were sampled with 44,629 points and 77,501 points, from which attribute values related to topography, climate, and subsequent soil conditions were extracted. We calculated the 1988 Yellowstone fire burn thresholds using the differenced Normalized Burn Ratio (dNBR) and official fire maps. We used a burn severity map from the US Forest Service to calculate the burn severity values. Spatial regressions and Chi-Square tests were applied to determine the statistically significant characteristics of a lack of recovery. The non-recovery areas were found to cover 1005.25 km2. Among 11 variables considered as potential factors driving recovery areas and 13 variables driving non-recovery areas, elevation and maximum temperature were found to have high Variance Inflation Factors (4.73 and 4.72). The results showed that non-recovery areas all experienced severe burns and were located at areas with steeper slopes (13.99°), more precipitation (871.73 mm), higher pre-fire vegetation density (NDVI = 0.38), higher bulk density (750.03 kg/m3), lower soil organic matter (165.61 g/kg), and lower total nitrogen (60.97 mg/L). Chi-square analyses revealed statistically different pre-fire forest species (p < 0.01) and soil order (p < 0.01) in the recovery and non-recovery areas. Although Inceptisols dominated in both recovery and non-recovery areas, however, the composition of Mollisols was higher in the non-recovery areas (14%) compared to the recovery areas (11%). This indicated the ecological memory of the non-recovery site reverting to grassland post-disturbance. Unlike conventional studies only focusing on recovery areas, this study analyzed the non-recovery areas and found the key characteristics that make a landscape not resilient to the 1988 Yellowstone fire. The significant effects of elevation, precipitation, and soil pH on recovery may be significant to the forest management and forest resilience in the post-fire period.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3