Past and Future Land Use/Land Cover Changes in the Ethiopian Fincha Sub-Basin

Author:

Regasa Motuma Shiferaw,Nones MichaelORCID

Abstract

The increasing human pressure on African regions is recognizable when looking at Land Use Land Cover (LULC) change maps, generally derived from satellite imagery. Using the Ethiopian Fincha watershed as a case study, the present work focuses on (i) identifying historical LULC change in the period 1989–2019; (ii) estimating LULC in the next thirty years, combining Geographical Information Systems (GIS) with Land Change Modelling (LCM). Landsat 5/8 images were combined with field evidence to map LULC in three reference years (1989, 2004, 2019), while the Multi-Layer Markov Chain (MPL-MC) model of LCM was applied to forecast LULC in 2030, 2040, and 2050. The watershed was classified into six classes: waterbody, grass/swamp, built-up, agriculture; forest; and shrub. The results have shown that, in the past 30 years, the Fincha watershed experienced a reduction in forest and shrubs of about −40% and −13%, respectively, mainly due to ever-increasing agricultural activities, and such a trend is also expected in the future. In fact, for the period 2019–2050, LCM simulated a significant decrease in both forest and shrubs (around −70% and −20%, respectively), in favor of more areas covered by grass (19%) and built-up (20%). It is worth noting that a decrease in natural forests can drive an increase in soil erosion, fostering siltation in the water reservoirs located in the sub-basin. The study pointed out the urgency of taking actions in the sub-basin to counteract such changes, which can eventually lead to a less sustainable environment.

Funder

National Science Center

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3