Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India

Author:

Moharana Pravash ChandraORCID,Meena Roshan Lal,Nogiya Mahaveer,Jena Roomesh KumarORCID,Sharma Gulshan KumarORCID,Sahoo SonalikaORCID,Jha Prakash KumarORCID,Aditi Kumari,Vara Prasad P. V.ORCID

Abstract

Changes in land use have several impacts on soil organic carbon (C) and nitrogen (N) cycling, both of which are important for soil stability and fertility. Initially, the study area was barren uncultivated desert land. During the late 1960s, the introduction of a canal in the arid region converted the barren deserts into cultivated land. The objectives of the present study were to evaluate the effects of various land use systems on temporal changes in soil organic C and N pools, and to evaluate the usefulness of different C and N management indices for suitable and sustainable land use systems under arid conditions. We quantified soil organic C and N pools in five different land uses of the Ghaggar flood plains, in hot, arid Rajasthan, India. The study focused on five land use systems: uncultivated, agroforestry, citrus orchard, rice–wheat, and forage crop. These land use systems are ≥20 years old. Our results showed that total organic carbon (TOC) was highest (7.20 g kg−1) in the forage crop and lowest in uncultivated land (3.10 g kg−1), and it decreased with depth. Across different land uses, the very labile carbon (VLC) fraction varied from 36.11 to 42.74% of TOC. In comparison to the uncultivated system, forage cropping, rice–wheat, citrus orchard, and agroforestry systems increased active carbon by 103%, 68.3%, 42.5%, and 30.6%, respectively. Changes in management and land use are more likely to affect the VLC. In soil under the forage crop, there was a considerable improvement in total N, labile N, and mineral N. Lability index of C (LIC), carbon management index (CMI), and TOC/clay indices were more sensitive to distinguishing land uses. The highest value of CMI was observed in the forage crop system followed by rice–wheat and agroforestry. In the long term, adoption of the forage crop increased soil quality in the hot, arid desert environment by enhancing CMI and VLC, which are the useful parameters for assessing the capacity of land use systems to promote soil quality.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference44 articles.

1. Depletion of Organic Carbon, Phosphorus, and Potassium Stock Under a Pearl Millet Based Cropping System in the Arid Region of India

2. Effect of long-term cropping systems on soil organic carbon pools and soil quality in western plain of hot arid India

3. Carbon in Drylands: Desertification, Climate Change and Carbon Finance;Trumper;Proceedings of the A UNEP-UNDP-UNCCD Technical Note for Discussions at CRIC 7 Istanbul,2008

4. Soils and world food security

5. Evidence from the Deserts, Quaternary Environments;Williams,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3