Post-Fire Mechanical Degradation of Lightweight Concretes and Maintenance Strategies with Steel Fibers and Nano-Silica

Author:

Mashshay Alaa Fahad1,Hashemi S. Komeil1ORCID,Tavakoli Hamidreza1ORCID

Affiliation:

1. Civil and Structural Engineering, Civil and Environmental Engineering School, Babol Noshirvani University of Technology, Babol 4714873113, Iran

Abstract

Currently, the growth of building construction and the need for lighter but more sustainable materials are of interest. Additionally, recent fire incidents highlight the insufficient knowledge of the properties of materials after a fire. Common materials such as concrete should, to minimize their adverse environmental effects and expenses, be maintained in such a way as to increase their resistance and preserve their mechanical properties when subjected to high temperatures. Hence, in this research, the post-fire mechanical degradation of lightweight concrete (LWC) has been investigated. Moreover, the addition of steel fiber and nano-silica have been studied in terms of their ability to reduce the mechanical degradation of LWC subjected to high temperatures. For this purpose, different samples were considered in four mixture designs: the LWC samples, samples with steel fibers, samples with nano-silica, and samples with a combination of steel fibers and nano-silica. All samples were subjected to temperatures of 200, 400 and 600 degrees Celsius and compared with the control samples. The results show that, as the temperature increased, the tensile and compressive resistances of LWC decreased. The samples without fibers and nano-silica showed a greater decrease in mechanical properties with increasing temperature. The addition of steel fibers and nano-silica, individually or as a combination, can improve the compressive and tensile strength of the concrete both at room temperature and at higher temperatures.

Funder

Babol Noshirvani University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3