Effects of Precipitation Variation on Annual and Winter Soil Respiration in a Semiarid Mountain Shrubland in Northern China

Author:

Shen Huitao1,Zhang Tao1,Zhao Yanxia1,Wu Aibin1,Zheng Zhenhua1,Cao Jiansheng2

Affiliation:

1. Hebei Engineering Research Center for Geographic Information Application, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050021, China

2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China

Abstract

In response to global climate change, future precipitation changes are expected to profoundly influence soil respiration in arid and semiarid areas. However, few studies focus on CO2 emissions from soils undergoing precipitation changes in semiarid mountain shrublands in winter. A precipitation-manipulation experiment with three levels of precipitation (30% decreased precipitation (DP), ambient precipitation (AP), and 30% increased precipitation (IP)) was performed to examine the effects of variable precipitation on soil respiration (SR) and wintertime contributions to annual SR emissions in Vitex negundo var. heterophylla shrub ecosystems located on the Middle Taihang Mountain in Hebei Province, northern China. The results showed that the average annual SR rates and winter SR rates ranged from 1.37 to 1.67 μmol m−2 s−1 and 0.42 to 0.59 μmol m−2 s−1 among the different precipitation treatments. The model based on soil moisture better represented the soil-respiration rates, suggesting that the variable precipitation extended the water’s limitation of the soil’s CO2 emissions. The cumulative annual soil CO2 emissions were 523, 578, and 634 g C m−2 in response to the DP, AP, and IP treatments, respectively. The ratio of the soil CO2 emissions in winter to the annual CO2 emissions varied from 7.6 to 8.8% in response to the different precipitation treatments. Therefore, ignoring the soil CO2 emissions in winter leads to the underestimation of the carbon losses in semiarid shrublands. Our results highlight that variable precipitation significantly influences soil-respiration rates, and soil CO2 emissions in winter must not be ignored when predicting the future feedback between SR and climate change in semiarid regions.

Funder

Natural Science Foundation of Hebei Province

Natural Science Foundation of China

Youth Talent Project of Hebei Province

Talent Training Program of Hebei Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3