Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data

Author:

Zhao Jing1,Nurmemet Ilyas12ORCID,Muhetaer Nuerbiye1,Xiao Sentian1ORCID,Abulaiti Adilai1

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China

Abstract

Soil salinization is one of the major problems affecting arid regions, restricting the sustainable development of agriculture and ecological protection in the Keriya Oasis in Xinjiang, China. This study aims to capture the distribution of soil salinity with polarimetric parameters and various classification methods based on the Advanced Land Observing Satellite-2(ALOS-2) with the Phased Array Type L-Band Synthetic Aperture Radar-2 (PALSAR-2) and Landsat-8 OLI (OLI) images of the Keriya Oasis. Eleven polarization target decomposition methods were employed to extract the polarimetric scattering features. Furthermore, the features with the highest signal-to-noise ratio value were used and combined with the OLI optimal components to form a comprehensive dataset named OLI + PALSAR2. Next, two machine learning algorithms, Support Vector Machine (SVM) and Random Forest, were applied to classify the surface characteristics. The results showed that better outcomes were achieved with the SVM classifier for OLI + PALSAR2 data, with the overall accuracy, Kappa coefficient, and F1 scores being 91.57%, 0.89, and 0.94, respectively. The results indicate the potential of using PALSAR-2 data coupled with the classification in machine learning to monitor different degrees of soil salinity in the Keriya Oasis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3