An Improved Partitioning Method via Disassociation towards Environmental Sustainability

Author:

Alshuhail Asma1,Bhatia Surbhi1ORCID

Affiliation:

1. Department of Information Systems, College of Computer Science and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

The amount of data created by individuals increases daily. These data may be gathered from various sources, such as social networks, e-commerce websites and healthcare systems, and they are frequently made available to third-party research and commercial organisations to facilitate a wide range of data studies. The protection of sensitive and confidential information included within the datasets to be published must be addressed, even though publishing data can assist organisations in improving their service offerings and developing new solutions that would not otherwise be available. The research community has invested great effort over the past two decades to comprehend how individuals’ privacy may be preserved when their data need to be published. Disassociation is a common approach for anonymising transactional data against re-identification attacks in privacy-preserving data publishing. To address this issue, we proposed three new strategies for horizontal partitioning: suppression, adding and remaining list. Each strategy identifies a different approach for handling small clusters with fewer than k transactions. We used three real datasets for transactional data in our experiments, and our findings showed that our proposed strategies could decrease the percentage of information loss of disassociated transactional data by almost 35%, comparing it with the previous original disassociation algorithm. As a result, the utility of published data will be improved.

Funder

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3