Statistical and Visual Analysis of Audio, Text, and Image Features for Multi-Modal Music Genre Recognition

Author:

Wilkes Ben,Vatolkin IgorORCID,Müller Heinrich

Abstract

We present a multi-modal genre recognition framework that considers the modalities audio, text, and image by features extracted from audio signals, album cover images, and lyrics of music tracks. In contrast to pure learning of features by a neural network as done in the related work, handcrafted features designed for a respective modality are also integrated, allowing for higher interpretability of created models and further theoretical analysis of the impact of individual features on genre prediction. Genre recognition is performed by binary classification of a music track with respect to each genre based on combinations of elementary features. For feature combination a two-level technique is used, which combines aggregation into fixed-length feature vectors with confidence-based fusion of classification results. Extensive experiments have been conducted for three classifier models (Naïve Bayes, Support Vector Machine, and Random Forest) and numerous feature combinations. The results are presented visually, with data reduction for improved perceptibility achieved by multi-objective analysis and restriction to non-dominated data. Feature- and classifier-related hypotheses are formulated based on the data, and their statistical significance is formally analyzed. The statistical analysis shows that the combination of two modalities almost always leads to a significant increase of performance and the combination of three modalities in several cases.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3