Nighttime Reflectance Generation in the Visible Band of Satellites

Author:

Kim Kimoon,Kim Ji-Hye,Moon Yong-Jae,Park Eunsu,Shin Gyungin,Kim Taeyoung,Kim Yerin,Hong SungwookORCID

Abstract

Visible (VIS) bands, such as the 0.675 μm band in geostationary satellite remote sensing, have played an important role in monitoring and analyzing weather and climate change during the past few decades with coarse spatial and high temporal resolution. Recently, many deep learning techniques have been developed and applied in a variety of applications and research fields. In this study, we developed a deep-learning-based model to generate non-existent nighttime VIS satellite images using the Conditional Generative Adversarial Nets (CGAN) technique. For our CGAN-based model training and validation, we used the daytime image data sets of reflectance in the Communication, Ocean and Meteorological Satellite / Meteorological Imager (COMS/MI) VIS (0.675 μm) band and radiance in the longwave infrared (10.8 μm) band of the COMS/MI sensor over five years (2012 to 2017). Our results show high accuracy (bias = −2.41 and root mean square error (RMSE) = 36.85 during summer, bias = −0.21 and RMSE = 33.02 during winter) and correlation (correlation coefficient (CC) = 0.88 during summer, CC = 0.89 during winter) of values between the observed images and the CGAN-generated images for the COMS VIS band. Consequently, our CGAN-based model can be effectively used in a variety of meteorological applications, such as cloud, fog, and typhoon analyses during daytime and nighttime.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference15 articles.

1. Evolution of satellite observation in the United States and their use in meteorology;Purdom,1996

2. Supplement to An Introduction to Meteosat Second Generation (MSG)

3. Coordination Group for Meteorological Satellites (CGMS), 2007. CGMS global contingency plan, WMO Space Programme http://www.wmo.int/pages/prog/sat/documents/CGMS_Contingency-Plan-2007.pdf

4. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites

5. INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3