Remotely Sensed Variables of Ecosystem Functioning Support Robust Predictions of Abundance Patterns for Rare Species

Author:

Arenas-Castro SalvadorORCID,Regos AdriánORCID,Gonçalves João F.ORCID,Alcaraz-Segura DomingoORCID,Honrado João

Abstract

Global environmental changes are affecting both the distribution and abundance of species at an unprecedented rate. To assess these effects, species distribution models (SDMs) have been greatly developed over the last decades, while species abundance models (SAMs) have generally received less attention even though these models provide essential information for conservation management. With population abundance defined as an essential biodiversity variable (EBV), SAMs could offer spatially explicit predictions of species abundance across space and time. Satellite-derived ecosystem functioning attributes (EFAs) are known to inform on processes controlling species distribution, but they have not been tested as predictors of species abundance. In this study, we assessed the usefulness of SAMs calibrated with EFAs (as process-related variables) to predict local abundance patterns for a rare and threatened species (the narrow Iberian endemic ‘Gerês lily’ Iris boissieri; protected under the European Union Habitats Directive), and to project inter-annual fluctuations of predicted abundance. We compared the predictive accuracy of SAMs calibrated with climate (CLI), topography (DEM), land cover (LCC), EFAs, and combinations of these. Models fitted only with EFAs explained the greatest variance in species abundance, compared to models based only on CLI, DEM, or LCC variables. The combination of EFAs and topography slightly increased model performance. Predictions of the inter-annual dynamics of species abundance were related to inter-annual fluctuations in climate, which holds important implications for tracking global change effects on species abundance. This study underlines the potential of EFAs as robust predictors of biodiversity change through population size trends. The combination of EFA-based SAMs and SDMs would provide an essential toolkit for species monitoring programs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services,2019

2. Essential Biodiversity Variables

3. Monitoring essential biodiversity variables at the species level;Pereira,2017

4. Building essential biodiversity variables ( EBV s) of species distribution and abundance at a global scale

5. Can models of presence-absence be used to scale abundance? Two case studies considering extremes in life history

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3