Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators

Author:

Jiang Mingtao,Lai Adrian C. H.,Law Adrian Wing-KeungORCID

Abstract

Currently, the design of advanced moving grate (AMG) incinerators for solid waste is aided by computational simulations. The simulation approach couples a waste bed model to characterize the incineration processes of the waste material on top of the moving grate, with a computational fluid dynamics (CFD) model to reproduce the heated air movement and reactions in the incinerator space above. However, the simulation results of AMG incinerators are rarely compared with actual field measurements for validation in the literature so far. In this study, we first examine the sensitivity of pyrolysis kinetics in the waste bed model using three existing alternatives. The predictions of combustion characteristics, including the bed height, flow and temperature distributions, composition of stack gases and gas emissions are obtained for the three alternatives and compared with measurements from a simple laboratory furnace. The results show that the pyrolysis kinetics mechanism can significantly affect the outputs from the waste bed model for incineration modelling. Subsequently, we propose a new coupling approach based on a recent AMG waste bed model (which includes the complex pyrolysis kinetics inside the waste bed on top of the moving grate) and the freeboard CFD simulations. The new approach is then used to predict the field performance of a large scale waste-to-energy (WTE) plant and the predictions are compared directly with the real measurements in various operational scenarios. The comparison shows an overall satisfactory agreement in terms of temperature and exit gases composition given the complexity of the real life operations, although the CO emission is slightly underpredicted.

Funder

National Research Foundation, Singapore

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3