Abstract
Two-dimensional (2D) materials may play an important role in future photodetectors due to their natural atom-thin body thickness, unique quantum confinement, and excellent electronic and photoelectric properties. Semimetallic graphene, semiconductor black phosphorus, and transition metal dichalcogenides possess flexible and adjustable bandgaps, which correspond to a wide interaction spectrum ranging from ultraviolet to terahertz. Nevertheless, their absorbance is relatively low, and it is difficult for a single material to cover a wide spectrum. Therefore, the combination of phototransistors based on 2D hybrid structures with other material platforms, such as quantum dots, organic materials, or plasma nanostructures, exhibit ultra-sensitive and broadband optical detection capabilities that cannot be ascribed to the individual constituents of the assembly. This article provides a comprehensive and systematic review of the recent research progress of 2D material photodetectors. First, the fundamental detection mechanism and key metrics of the 2D material photodetectors are introduced. Then, the latest developments in 2D material photodetectors are reviewed based on the strategies of photocurrent enhancement. Finally, a design and implementation principle for high-performance 2D material photodetectors is provided, together with the current challenges and future outlooks.
Funder
National Natural Science Foundation of China
Key Research and development plan of Shandong Province
Subject
General Materials Science,General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献