Abstract
In the aim to go beyond the performance tradeoffs of classic electric double-layer capacitance and pseudo-capacitance, composites made out of carbon and pseudo-capacitive materials have been a hot-spot strategy. In this paper, a nest-like MnO2 nanowire/hierarchical porous carbon (HPC) composite (MPC) was successfully fabricated by a controllable in situ chemical co-precipitation method from oily sludge waste. Due to the advantages of high surface area and fast charge transfer for HPC as well as the large pseudo-capacitance for MnO2 nanowires, the as-prepared MPC has good capacitance performance with a specific capacitance of 437.9 F g−1 at 0.5 A g−1, favorable rate capability of 79.2% retention at 20 A g−1, and long-term cycle stability of 78.5% retention after 5000 cycles at 5 A g−1. Meanwhile, an asymmetric supercapacitor (ASC) was assembled using MPC as the cathode while HPC was the anode, which exhibits a superior energy density of 58.67 W h kg−1 at the corresponding power density of 498.8 W kg−1. These extraordinary electrochemical properties highlight the prospect of our waste-derived composites electrode material to replace conventional electrode materials for a high-performance supercapacitor.
Funder
Natural Science Foundation of Shandong Province
Opening Fund of State Key Laboratory of Heavy Oil Processing
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献