Abstract
This study proposes the use of new working fluids, refrigerant/IL+ carbon nanomaterials (CNMs), in absorption systems as an alternative to conventional working fluids. In this regard, the thermophysical properties of ammonia and carbon nanomaterials (graphene and single-wall carbon nanotubes) dispersed into [BMIM]BF4 ionic liquid are theoretically investigated. The thermophysical properties of NH3/IL+ CNMs solutions are computed for weight fractions of NH3 in the range of 0.018–0.404 and temperatures between 293 and 388 K. In addition, two weight fractions of CNMs are considered: 0.005 and 0.01, respectively. Our results indicate that by adding a small amount of nanomaterial to the ionic liquid, the solution’s thermal conductivity is enhanced, while its viscosity and specific heat are reduced. Correlations of the thermal conductivity, viscosity, specific heat, and density of the NH3/IL+ CNMs solutions are proposed.
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献